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ABSTRACT
Acoustic signal has been recently adopted for contact-free hand
gesture recognition due to its fine-grained sensing granularity and
wide availability of microphone and speaker in consumer-grade
electronic devices such as smartphones. However, a very limited
sensing range constrains acoustic sensing to application scenar-
ios where users interact with devices in close proximity. In this
paper, we improve the range of acoustic sensing and demonstrate
the feasibility of enabling room-scale hand gesture recognition
using commodity smart speakers. We develop a series of novel
signal processing techniques and implement our system on two
commodity smart speaker prototypes with different numbers of mi-
crophones. Extensive evaluations are performed in three different
environments with 1440 gestures collected from 16 participants.
Experiment results show that our system can significantly increase
the sensing range from 1 m to 4-5 m. In the challenging scenario
where the user is 4𝑚 away from the smart speaker and there is
strong interference, the achieved gesture recognition accuracy is
still higher than 90%.

CCS CONCEPTS
•Human-centered computing → Ubiquitous and mobile comput-
ing systems and tools.

KEYWORDS
Room-scale hand gesture recognition, Contact-free acoustic sens-
ing, Smart speaker
ACM Reference Format:
Dong Li, Jialin Liu, Sunghoon Ivan Lee, Jie Xiong. 2022. Room-scale Hand
Gesture Recognition Using Smart Speakers. In The 20th ACM Conference
on Embedded Networked Sensor Systems (SenSys ’22), November 6–9, 2022,
Boston, MA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3560905.3568528

1 INTRODUCTION
Contact-free hand gesture recognition has gained extensive atten-
tion from both industry and research communities. As a promis-
ing interactive interface without any direct physical contact, it is
particularly appealing during the current COVID-19 pandemic. Ac-
cording to a recent survey [36], the market of contact-free gesture
recognition is projected to reach 37.6 billion in 2026, contributing to
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 Perform the gesture

 Recognize the gesture

 Control the television

Inaudible acoustic signals

(a) Controlling the television.

 Perform the gesture

 Switch between songs

Inaudible acoustic signals

 Recognize the gesture

(b) Switching between songs.

Figure 1: Two application scenarios for SpeakerGesture. (a)
The user can regard the smart speaker as a gesture-enabled
input device to remotely control the television, e.g., selecting
the menu options. (b) The user can switch between songs
when the smart speaker plays music very loudly and cannot
hear the user’s voice command.

diversified disciplines such as healthcare, VR/AR gaming, automo-
tive and automation. Recent advancement in wireless sensing, i.e.,
sensing human activities using wireless signals, provides us a new
modality to perform hand gesture recognition. More specifically,
wireless signals, such asWiFi [2, 15, 33, 44], visible light [20–22, 45],
RFID [7, 9, 17, 57], LoRa [52] and sound [10, 28, 31, 37, 49–51, 55],
have been successfully exploited to sense our hand gestures.

Compared with modalities that employ other types of wireless
signals, acoustic-based systems offer two unique advantages. On
one hand, acoustic signal has inherent superiority in sensing gran-
ularity and precision, owing to its low propagation speed in the
air (340𝑚/𝑠). On the other hand, acoustic components (i.e., speak-
ers and microphones) are widely available in electronic devices that
we interact with on a daily basis. Previous systems have achieved
acoustic-based hand gesture recognition on a variety of commodity
devices, such as smartphones [31, 49–51, 53], smartwatches [55],
and laptops [12, 37]. However, the constrained sensing range lim-
its these systems to application scenarios where users can only
interact with devices in close proximity. On the other hand, there
are a variety of real-life applications that require long-range ges-
ture interaction between users and devices. For example, when
sitting three meters away from the smart speaker on the couch,
a user would like to remotely control the television using hand
gestures [28], as illustrated in Figure 1a.

In this paper, we propose to enable room-scale hand gesture
recognition using increasingly popular smart speakers. With the
rise of voice assistants, smart speakers such as Amazon Echo [3]
and Apple HomePod [5] have become an essential part of daily
life for millions of families over the past few years [47]. Our pro-
posed system SpeakerGesture can extend the primary use of smart
speakers from voice control to room-scale gesture control. The
desirable design features for SpeakerGesture include that: (i) it can
be deployed on commodity smart speakers without any hardware
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modifications; (ii) it can substantially extend the sensing range
to a room scale (i.e., 4 − 5 𝑚); (iii) it can support robust gesture
recognition even in the presence of severe interference; (iv) it can
simultaneously work with music play and voice control without
compromising the main functions of smart speakers. We believe
that, gesture control, complemented with voice control, can cre-
ate richer user experience that notably contributes to easing our
interactions with smart speakers. For example, a user can switch
between songs using hand gestures under the scenario when the
smart speaker is playing music very loudly and cannot hear his
voice command [4], as shown in Figure 1b.

The basic rationale behind acoustic-based hand gesture recog-
nition is that the transmitted inaudible acoustic signals would be
varied by hand movements. By analyzing the variations of signals
reflected from the hand, we can extract position information of the
hand. While promising, we face multiple challenges before we are
able to turn the idea into a practical system:

• Limited sensing range.While prior studies have increased the
range of acoustic-based human tracking to several meters,
it is sill very challenging to enable room-scale hand gesture
recognition [37, 49–51]. This is because the signal strength
of reflections highly depends on the target size. The sig-
nal strength of reflections from hands is much smaller than
that from bodies (e.g., human chest for respiration sensing),
making long-range hand gesture recognition more challeng-
ing. Furthermore, due to the directivity of the commodity
speakers [18], the sensing angle is also limited.

• Ambiguity issue. The microphones available on commodity
smart speakers are designed to enhance the reception quality
of low-frequency human voices [30]. The spacing between
adjacent microphones is much larger than the half wave-
length of the acoustic signals adopted for sensing, resulting
in severe ambiguity issue.

• Severe multipath interference. When the sensing range is
increased, the interference range is also increased. The small
size of hand makes it even more susceptible to interference
since the reflections from the surrounding objects can be
stronger than that from the hand. Although interference
from static objects (e.g., a wall) is relatively easy to handle [1],
dealing with interference from dynamic objects (i.e., the
interfering humans and the user body) is still challenging.

• Heavy training. Machine learning techniques are usually
adopted for hand gesture recognition, which require exten-
sive data collection and training. It is challenging to achieve
accurate and robust gesture recognition without any need
of data collection or training, considering the large user and
environment diversities in real-world settings.

To achieve room-scale hand gesture recognition, in SpeakerGes-
ture, we develop a chirp-based sensingmodel to include not only the
traditional distance information used in acoustic sensing but also
the angle information. The developed model can be utilized to quan-
tify the relationship between the hand position in 2-dimensional
space and the signals received at the microphone array. Based on
the developed model, we jointly estimate the hand position (i.e., dis-
tance and angle) by designing a maximum likelihood optimization
algorithm that can boost the sensing range in low SNR conditions.

To address the spatial aliasing issue caused by the large spacing
among microphones, we propose a novel concept of “extended
transmitted chirp” to increase the size of the effective bandwidth.

To address the severe interference issue, we leverage the fine-
grained spatial domain resolution of acoustic signals to separate the
hand reflections from other multipath interference. Note that the
spatial domain resolution of the adopted 2-dimensional distance-
angle estimation is much higher than that of the traditional 1-
dimensional distance estimation [18]. Based on the fact that the
reflections from static objects (e.g., furniture) remain unchanged
over time, we remove the static multipath interference by perform-
ing background subtraction [1]. Furthermore, we propose schemes
to address a challenging issue, i.e., identifying the hand reflection
from the dynamic interference (e.g., reflections from the user body
and surrounding moving humans). Previous systems either require
the user to perform gestures within a particular area [37] or require
the user to perform a particular gesture to trigger the system [28].
In this work, we relax the above-mentioned requirements by lever-
aging one key observation. Specifically, there always exist stable
reflections from both the user hand and the user body when per-
forming the targeted hand gestures. In contrast, there is only one
stable reflection from the interfering human.

Based on the identified hand gesture trajectory, we extract the
unique gesture features and adopt a simple decision tree algo-
rithm to classify hand gestures without any training. We implement
SpeakerGesture on two off-the-shelf smart speaker prototypes, in-
cluding ReSpeaker 6-Mic Circular Array [39] and ReSpeaker 2-Mic
Array [38]. The former one is equipped with six microphones that
are uniformly distributed at the circumference of a circle, which
has a similar layout as Apple HomePod [5] and Sonos One [40]. The
latter one is equipped with two microphones, which has a similar
layout as Google Home Mini [11]. We systematically evaluate the
performance of SpeakerGesture under different conditions. The key
contributions of this work are summarized as follows:

• To our best knowledge, SpeakerGesture is the first system
that exploits commodity smart speakers to enable contact-
free hand gesture recognition at room scale. We believe the
proposed signal processingmethods can be applied to benefit
other sensing applications.

• We establish the chirp-based sensing model to quantify the
relationship between the hand position in 2-D space and
the received signals at microphones. To enable room-scale
hand tracking, we propose the joint estimation algorithm to
estimate the position-related parameters and design novel
methods to address the spatial aliasing issue. Furthermore,
we develop a sequence of techniques to effectively identify
hand gestures from multipath interference that are common
in real-world settings.

• We implement SpeakerGesture on two smart speaker pro-
totypes, and conduct comprehensive evaluation in three
different environments with 1440 gestures collected from
16 participants. Experiment results show that our system is
able to achieve a median recognition accuracy of 97.25% for
six hand gestures without any training. Even in the most
challenging scenario where there exists strong interference
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Figure 2: The core idea behind our chirp-based signal model.
(a) The distance information can be computed bymultiplying
half of the ToF with the sound speed; (b) The angle informa-
tion can be estimated by ToF differences across microphones.

and the user is 4𝑚 away from the smart speaker, our sys-
tem can still achieve a high recognition accuracy of 91.67%.
Furthermore, we showcase that SpeakerGesture can work
simultaneously with the main functions of the smart speaker
such as playing music.

2 ROOM-SCALE HAND TRACKING
This section presents how we enable room-scale hand tracking
using smart speakers. We first propose a chirp-based acoustic sig-
nal model to quantify the relationship between the hand position
and the received signals at the circular microphone array. Then we
design parameter estimation algorithms to extract position-related
parameters that can characterize gestures, i.e., a collection of dis-
tances and angles. As last, we develop a series of techniques to
address the spatial ambiguity issue on commodity smart speakers.

2.1 Chirp-based Signal Model
This section describes a detailed mathematical derivation of our
chirp-based signal model that can extract the position information
(i.e., distance and angle) of the hand from the reflected signals. Most
commodity smart speakers (e.g., Amazon Echo Dot [3] and Apple
HomePod [5]) employ a circular microphone array to maximize
the quality of voice capture [30]. This requires us to design a signal
model to extract the position information of the hand based on the
reflected signals received at the circular microphone array. Without
loss of generality, we present our signal model using the smart
speaker with seven microphones. The proposed signal model can
be applied to smart speakers with other number of microphones,
e.g., six microphones and two microphones, in our implementation.

Chirp-based signals have been widely adopted in acoustic sens-
ing, where the frequency of signals changes linearly over time, as
shown in Figure 2a. The key insight behind chirp-based tracking is
to compute the Time-of-Flight (ToF) of the received signals at each
microphone by comparing them with the chirp signals transmit-
ted from a speaker. The distance between the hand and the smart
speaker can be estimated by multiplying half of the ToF with the
sound speed in the air. The angle information (i.e., the angle of the
hand position with respect to the smart speaker) can be estimated
by measuring the ToF differences across multiple microphones.

Next, we mathematically derive the representation of the posi-
tion information of the hand using the received signals from the
circular microphone array. During the process of hand tracking, the
speaker continuously transmits a sequence of chirp signals, each
of which can be represented as

𝑆) (𝑡) = cos
�
2𝜋

�
𝑓0𝑡 +

𝐵

2𝑇 𝑡
2� �, (1)

where 𝑓0, 𝐵, and 𝑇 denote the start frequency, bandwidth, and
duration of the chirp, respectively. As shown in Figure 2a, the
signal reflected from a hand to the microphone is a delayed version
of the transmitted signal, which can be represented as

𝑆’ (𝑡) = 𝛼 cos
�
2𝜋

�
𝑓0 (𝑡 − 𝜏) +

𝐵

2𝑇 (𝑡 − 𝜏)2
� �

+𝑊 (𝑡), (2)

where 𝛼 is the amplitude attenuation factor. 𝜏 is the ToF of signals
reflected by the hand.𝑊 (𝑡) is the Gaussian white noise, which is
omitted in the following equations for simplicity.

The transmitted and received signal can be processed to generate
the mixed signal 𝑆" (𝑡) [18], which contains the ToF information of
the received signals reflected by the hand. Specifically, the received
signal is multiplied by the transmitted signal 𝑆) (𝑡) to derive the
In-Phase (𝐼 ) part of the mixed signal, i.e., 𝑆� (𝑡) = 𝑆’ (𝑡) × 𝑆) (𝑡).
Similarly, the received signal is multiplied by the 90-degree phase-
shifted version of the transmitted signal 𝑆) ′ (𝑡) = sin

�
2𝜋 (𝑓0𝑡 +

�
2) 𝑡

2)
�
to derive the Quadrature (𝑄) part of the mixed signal, i.e.,

𝑆& (𝑡) = 𝑆’ (𝑡) ×𝑆) ′ (𝑡). After applying the product-to-sum identity
and a low-pass filter, the mixed signal can be obtained by combining
the 𝐼 and 𝑄 component as

𝑆" (𝑡) = 𝑆� (𝑡) + 𝑗𝑆& (𝑡) =
1
2𝛼𝑒

92c (50+ �) C )g . (3)

The obtained ToF information can be analyzed to extract the
distance and angle information of the hand. Consider a hand whose
distance with respect to the center microphone of the circular array
is denoted as 𝑑 . The ToF of the signal received at this microphone
can be computed as the round-trip distance divided by the signal
speed 𝑐 , i.e., 232 . Suppose that except the microphone at the center,
there are a total of 𝐾 microphones at the circumference of the
circle. As shown in Figure 2b, these microphones equally divide
the circle into 𝐾 parts, and the angle between the 𝑘th microphone
and the first microphone at the circumference can be computed as
𝜗 (𝑘) =

2c (:−1)
 

. Compared with the center microphone, the ToF
of the received signal would have a shorter or longer propagation
time of ’ cos(\−o (: ) )

2 for the 𝑘th microphone at the circumference,
where 𝑅 and 𝜃 are the radius of the circle and the incidence angle
of reflected signals, respectively. The ToF 𝜏: of the signal received
at the 𝑘th microphone can then be computed as

𝜏: =
2𝑑
𝑐

− 𝑅 cos(𝜃 − 𝜗 (𝑘))
𝑐

. (4)

By substituting Equation (4) into Equation (3), our model for the
mixed signal can be represented as

𝑆" (𝑡=, 𝑘 ;p) =
1
2𝛼𝑒

9i (C=�: )

=
1
2𝛼𝑒

92c (50+ �) C= ) (
23
2
− ’ cos(\−o (: ) )

2
) ,

(5)



SenSys '22, November 6�9, 2022, Boston, MA, USA Dong Li, Jialin Liu, Sunghoon Ivan Lee, Jie Xiong

(a) Combining constructively. (b) Canceling out.

Figure 3: The illustration of our joint estimator. (a) When the
grid is at where the hand locates, the joint estimations for all
signal samples (blue dots) combine constructively, resulting
in a strong superposed vector (red arrow). (b) Otherwise, they
cancel each other out, resulting in a weak superposed vector.

whereC= is the=th sampling timestamp andi ¹C=• : º is the phase
change induced by the: th microphone at the=th sampling times-
tamp. Equation (5) has three unknown parameters: the distance3,
the angle\ , and the signal attenuationU. We denote the position-
related parameters as a parameter vectorp = »3• \¼, representing the
position information of the hand. In a multipath-prevalent indoor
environment, besides the hand re�ection, there are other re�ections
from the static objects (e.g., furniture) and dynamic objects (e.g.,
interfering humans). The received signals at each microphone are
a superposition of signals re�ected from all the objects.

2.2 Parameter Estimation Algorithm
To enable room-scale hand tracking, we design the joint param-
eter estimation algorithm based on the maximum likelihood op-
timization that can boost the tracking performance in low SNR
conditions [8]. Speci�cally, the whole search space is partitioned
into many grids where each grid can be represented by its position
information, i.e., distance3 and angle\ . For each grid, we can com-
pute the likelihood that the hand locates in this grid based on the
microphone measurements.

Next, we introduce how to construct the joint estimator to com-
pute the likelihood that the hand locates in a given grid. The re-
ceived signals at the microphones are pre-processed to generate
the mixed signal as mentioned in Section 2.1. Suppose that a chirp
contains# samples, the mixed signals from ¸ 1 microphones( "

<
can be expressed as discretized signal samples and arranged in an
# � ¹  ¸ 1º matrix as

( "
< =

©
­
­
­
­
«

( "
< ¹C1•1º ( "

< ¹C1•2º � � � ( "
< ¹C1•  ¸ 1º

( "
< ¹C2•1º ( "

< ¹C2•2º � � � ( "
< ¹C2•  ¸ 1º

”””
”””

”””
”””

( "
< ¹C# •1º ( "

< ¹C# •2º � � � ( "
< ¹C# •  ¸ 1º

ª
®
®
®
®
¬

•

where( "
< ¹C=• : º is the signal sample measured from the: th micro-

phone at the=th sampling timestamp, which can be further denoted
by the attenuation factorU and the phase changei < ¹C=• : º, i.e.,
( "
< ¹C=• : º = 1

2U49i< ¹C= •: º . Furthermore, we can theoretically com-
pute the value of the signal sample for the: th microphone at the=th

sampling timestamp using our signal model in Equation (5). Specif-
ically, for any given grid at distancê3 and angle\̂ , the theoretical

signal sample( "
C ¹C=• : º with a unit amplitude can be computed as

( "
C ¹C=• : º = 49^i ¹C= •: º = 492c ¹50¸ �

) C= º ¹ 23̂
2 � ' cos¹ ^\ � o ¹: º º

2 º• (6)

where ^i ¹C=• : º represents the theoretical phase change induced
by distance3̂ and angle\̂ . Through dividing the measured signal
sample( "

< ¹C=• : º by the theoretical signal sample( "
C ¹C=• : º, we

can derive the joint estimation for one signal sampleE=•: ¹3̂•\̂ º as

E=•: ¹3̂•\̂ º =
( "
< ¹C=• : º

( "
C ¹C=• : º

=
1
2

U49¹i < ¹C= •: º � ^i ¹C= •: º º” (7)

Since there are a total of# � ¹  ¸ 1º measurements at all micro-
phones, we can compute the joint estimatorE¹3̂•\̂ º by summing
the joint estimation over all the signal samples as

E¹3̂•\̂ º =
#Õ

==1

 ¸ 1Õ

: =1

E=•: ¹3̂•\̂ º” (8)

The key idea for our joint estimator is that, if the grid at distancê3
and angle\̂ is exactly where the hand locates, the theoretical phase
change^i ¹C=• : º and the measured phase changei < ¹C=• : º for each
signal sample will be approximately equal. Then the joint estimates
E=•: ¹3̂•\̂ º are close to the real axis asi < ¹C=• : º� ^i ¹C=• : º approaches
0, which are marked as blue dots in Figure 3a. When we add up
the joint estimates for all the signal samples, they will combine
constructively, and thus, the amplitude of the superposed vector
E¹3̂•\̂ º marked as the red arrow is maximized. Otherwise, if the grid
is not where the hand locates, the value ofi < ¹C=• : º � ^i ¹C=• : º will
distribute between0and2c . Then the joint estimatesE=•: ¹3̂•\̂ º are
evenly distributed with respect to the origin as shown in Figure 3b.
When we add up the joint estimates for all the signal samples, they
cancel each other out, resulting in a weak superposed vector.

Therefore, the amplitude of our joint estimator is a good metric
to measure the likelihood of the hand locating in a given grid. To ob-
tain the position-related parameters of the hand, we can formulate
the optimal parameter search problem as the maximum likelihood
optimization. Speci�cally, we search all the grids with the di�erent
pairs of distanceŝ3 and angles\̂ , and pick out the pair that has the
maximum likelihood:

¹3� • \ � º = arg max
3̂•^\

jE¹3̂•\̂ º j” (9)

In the context of room-scale hand tracking, we can constrain the
search range of distance and angle according to the size constraints
of the room. The above-mentioned algorithm outputs the position-
related parametersp = »3� • \ � ¼associated with the hand for each
round of estimate. It is noteworthy that we would have a collection
of position estimates during the process of hand gestures.

2.3 Removing the Spatial Ambiguity
The relatively large spacing among microphones on smart speakers
is optimized for speech recognition [30]. This arrangement would
cause the spatial ambiguity issue when estimating the position-
related parameters using chirp-based signals. As shown in Figure
4a, there exist multiple peaks on the resulted distance-angle pro-
�le, including the true peak and replica peaks caused by spatial
ambiguity. Due to noise and multipath, the peak with the largest
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(a) Without applying any
techniques.

(b) After increasing e�ec-
tive bandwidth.

(c) After removing useless
signal samples.

Figure 4: The distance-angle pro�les for a cardboard at 3 < and 60°. (a)
The amplitudes of the true peak and replica peaks are very similar. (b)
After increasing the e�ective bandwidth, the amplitudes for the replica
peaks become smaller. (c) If we further remove useless signal samples, the
amplitudes of the replica peaks are signi�cantly reduced.

(a) Small e�ective
bandwidth.

(b) Large e�ective
bandwidth.

Figure 5: (a) When the received signal is mul-
tiplied with the original transmitted signal, its
e�ective bandwidth is very small. (b) However,
the whole bandwidth can be exploited when it is
multiplied with the extended transmitted signal.

amplitude may not correspond to the true peak, making it hard to
identify the true peak by amplitude.

Inspired by prior studies that adopt wideband signals to achieve
ambiguity-free angle estimation [43, 56], we propose to adopt wide-
band chirps to address the spatial ambiguity issue. There are two
constraints that we need to consider when choosing a wideband
chirp signal. On one hand, the sampling rate on smart speakers is
usually48:�I , indicating that the frequency of the chirp signal
should be below24:�I . On the other hand, acoustic signals below
17:�I become audible for human beings [34], which is not suitable
for sensing. Therefore, the frequency band of our chirp signal is
chosen from17:�I to 23:�I . Through extensive experiments, we
�nd that the wideband chirp signal can perfectly remove the spatial
ambiguity when the hand is close to the smart speaker. However,
its performance decreases as the distance between the hand and the
smart speaker increases. In the following, we identify the reasons
and propose novel methods to address it.

2.3.1 Small E�ective Bandwidth.Although the bandwidth for the
transmitted signal is large, only the overlapped part between the
transmitted signal and received signal can provide useful informa-
tion and we term it ase�ective bandwidthhereafter. As shown in
Figure 5a, the mixed signal is derived by multiplying the transmit-
ted signal with the received signal, and the product is non-zero
only for their overlapped part. The rest of bandwidth is wasted due
to the zero product. As the distance between the hand and smart
speaker increases, the e�ective bandwidth decreases.

To address the problem, we design a novel signal processing
method to increase the e�ective bandwidth for spatial ambiguity
removal. Our key idea is to exploit the whole bandwidth of the
received signal even when the target is far away from the smart
speaker, which is equivalent to increasing the e�ective bandwidth,
as shown in Figure 5b. To achieve it, we multiply the upsampled
received signal with the extended transmitted signal.It is worth
noting that the extended transmitted signal is not physically transmit-
ted by the speaker but generated in software.We discuss the design
principle of the extended transmitted signal below:

� Sweep time.The extended transmitted signal is designed by
adding an extra sweep time to the original transmitted signal.

Figure 6: The construction of the extended mixed signal. The
modules marked as red are newly added compared with the
construction using the original transmitted signal.

To exploit the whole bandwidth of the received signal, the
extra sweep time should be at least the maximum round-trip
time for the targeted sensing distance, which is2� 4 <

340< •B =
0”0235Bfor a sensing range of4 < . Note that the sweep
time for our original transmitted signal is0”08B, so the total
sweep time for the extended transmitted signals should be at
least0”1035B. In our design, we set the sweep time as0”12B.

� Bandwidth.For the chirp signal, the bandwidth increases
linearly along with the sweep time, as shown in Figure 5b.
The extra sweep time increases the bandwidth range from
the original17� 23:�I to 17� 26:�I .

� Sampling rate.To meet the requirements of the Nyquist sam-
pling theorem, the sampling rate of the extended transmitted
signal is set to96:�I . Since it is not an actual signal physi-
cally transmitted by the speaker, the high sampling rate does
not pose any requirement on the hardware. The actually
transmitted signal by the speaker still sweeps from17:�I
to 23:�I at a sampling rate of48:�I .

Figure 6 summarizes the construction of the extended mixed
signal using the extended transmitted signal, where the modules
marked as red are newly added compared with the construction
using the original transmitted signal. Speci�cally, we upsample the
received signal by a factor of2 using the cubic spline interpola-
tion [29]. After multiplying the upsampled received signal with the
extended transmitted signal, we downsample the I and Q compo-
nents by a factor of 2.

2.3.2 Useless Signal Samples.Figure 4b shows the distance-angle
pro�le after mixing the received signal with the extended transmit-
ted signal. Although the replica peaks are weakened, their ampli-
tudes are still large enough to confuse the identi�cation of the true


	Abstract
	1 Introduction
	2 Room-scale Hand Tracking
	2.1 Chirp-based Signal Model
	2.2 Parameter Estimation Algorithm
	2.3 Removing the Spatial Ambiguity

	3 Severe Interference Combating
	3.1 Extracting Trajectories for Multiple Objects
	3.2 Identifying Hand Gesture Trajectories

	4 Robust Gesture Recognition
	5 Evaluation
	5.1 Implementation
	5.2 Experiment Setup
	5.3 Benchmark Experiments
	5.4 Field Study

	6 Discussion and future work
	7 Related Work
	7.1 Contact-free Hand Tracking
	7.2 Contact-free Hand Gesture Recognition

	8 Conclusion
	References

